275 research outputs found

    Construcción y fuentes utilizadas para los términos médicos en el Diccionario de Autoridades

    Get PDF
    [ES]El llamado Diccionario de Autoridades sirvió como modelo a la mayor parte de los diccionarios españoles durante más de dos siglos, desde que fuera publicado a mediados del XVIII. Este trabajo, que forma parte de uno más amplio sobre los términos relacionados con la medicina en los diccionarios españoles del siglo XVIII, pretende servir para aclarar algunos detalles referentes a la historia de ese diccionario y, de un modo concreto, a la de las fuentes utilizadas en su confección y a la del método seguido para realizarlo. Con los datos que presentamos intentamos contribuir al tratamiento de esta área particular del léxico que es la de los términos médicos pero, además,creemos pueden servir para revisar algunas ideas que circulan sobre la manera de cómo se construye el primer diccionario académico

    Lo literario como fuente de inspiración para el lenguaje médico

    Get PDF

    Reseñas

    Get PDF
    Obra ressenyada: Isabelle BOEHM et Nathalie ROUSSEAU (dirs.), L'expressivité du lexique médical en Grèce et à Rome. Hommages à Françoise Skoda. Paris: Presses de l'université Paris-Sorbonne, 2014

    Fuentes lexicográficas para la historia de la alimentación y del fraude alimentario en la España del siglo XIX

    Get PDF
    La "nueva" historia de la alimentación, que desde las últimas décadas del siglo XX avanza con paso firme hasta la actualidad, ha ido incorporando enfoques, métodos de trabajo y fuentes, a la vez que diversificando sus centros de interés. En ese camino, lo que se relaciona con el fraude alimentario en el pasado —particularmente en la centuria decimonónica, en que adquirió gran magnitud— solo en épocas relativamente recientes ha logrado captar la atención de algunos investigadores, sin alcanzar todavía excesiva resonancia en el caso concreto de España. Entre las fuentes que se manejan para acercarse al problema señalado no suelen encontrarse los diccionarios generales de medicina ni tampoco los de falsificaciones de sustancias publicados en español durante el siglo XIX, a pesar de albergar gran cantidad de información al respecto. Con este trabajo pretendemos dar a conocer este tipo de obras, el contexto en que surgieron y algunas muestras de su contenido. La presentación de estos textos y los ejemplos de que nos serviremos tratarán de poner de manifiesto su utilidad en la reconstrucción de la historia del fraude alimentario, pero también la de otros aspectos de la historia de la alimentación.The new history of food, which began in the last decades of the 20th century and continues to gain in strength, increasingly contributes novel approaches, working methods and sources to its field of study and diversifies its areas of interest. In this line, what was known as food fraud in the past (particularly in the 19th century, when its scale was truly  arge) has only attracted the interest of researchers in relatively recent times and has had little impact, especially in the case of Spain. Among the sources used to approach this issue, it is not usual to find general dictionaries of medicine or dictionaries of substance forgeries published in Spanish during the 19th century, although they contain considerable relevant information. The aim of the present paper is to describe the context of these works and provide examples of their content. The texts reproduced and the examples given allow us to demonstrate their usefulness in the history of food fraud and other aspects of food history.La "nueva" historia de la alimentación, que desde las últimas décadas del siglo XX avanza con paso firme hasta la actualidad, ha ido incorporando enfoques, métodos de trabajo y fuentes, a la vez que diversificando sus centros de interés. En ese camino, lo que se relaciona con el fraude alimentario en el pasado —particularmente en la centuria decimonónica, en que adquirió gran magnitud— solo en épocas relativamente recientes ha logrado captar la atención de algunos investigadores, sin alcanzar todavía excesiva resonancia en el caso concreto de España. Entre las fuentes que se manejan para acercarse al problema señalado no suelen encontrarse los diccionarios generales de medicina ni tampoco los de falsificaciones de sustancias publicados en español durante el siglo XIX, a pesar de albergar gran cantidad de información al respecto. Con este trabajo pretendemos dar a conocer este tipo de obras, el contexto en que surgieron y algunas muestras de su contenido. La presentación de estos textos y los ejemplos de que nos serviremos tratarán de poner de manifiesto su utilidad en la reconstrucción de la historia del fraude alimentario, pero también la de otros aspectos de la historia de la alimentación

    Recursos internéticos relacionados con el lenguaje médico español

    Get PDF

    El futuro del español como lengua de la Medicina

    Get PDF
    El lenguaje español de la medicina, que ha pasado por diversas etapas desde la aparición de los primeros textos médicos en castellano a finales del Medievo hasta la actualidad, se encuentra en una tesitura difícil, a pesar del número de hablantes con que cuenta. En este trabajo intentamos, por una parte, analizar algunas de las causas que han desencadenado y están perpetuando esa situación y, por otra, tratamos de resaltar los medios de que todavía dispone el español para seguir siendo en el futuro una lengua apta para los intercambios especializados.The Spanish medical language has gone through different stages since the publication of the first medical texts in Spanish at the end of the Middle Ages up to today and finds itself nowadays in a difficult position despite the high number of Spanish speakers all around the world. In this paper we aim at, on the one hand, analyzing some of the reasons that have led to and are still responsible for this situation and, on the other hand, we try to highlight the means that Spanish language can count on in order to continue to be a language suitable for communication among specialists in the future

    Influence of Organic Enrichment and Spisula subtruncata (da Costa, 1778) on Oxygen and Nutrient Fluxes in Fine Sand Sediments

    Full text link
    [EN] The role of labile organic material and macrofaunal activity in benthic respiration and nutrient regeneration have been tested in sublittoral fine sand sediments from the Gulf of Valencia (northwestern Mediterranean Sea). Three experimental setups were made using benthic chambers. One experiment was performed in-situ through the annual cycle in a well-sorted fine sand community. The remaining experiments were carried out with mesocosms under laboratory conditions: one with different concentrations of organic enrichment (mussel meat and concentrated diatoms culture), and the other adding two different densities of the endofaunal bivalve Spisula subtruncata. Biochemical variables in surface sediment and changes in oxygen consumption and nutrient fluxes throughout incubation period were studied in each experiment. In the in situ incubations, dissolved oxygen (DO) fluxes showed a strong correlation with sedimentary biopolymeric fraction of organic carbon. Organic enrichment in the laboratory experiments was responsible for increased benthic respiration. However, sediment response (expressed as DO uptake and dissolved inorganic nitrogen—DIN—release) between oligotrophic and eutrophic conditions was more intense than between eutrophic and hypertrophic conditions. S. subtruncata abundances close to 400 and 850 ind m−2 also intensified benthic metabolism. DO uptake and DIN production in mesocosms with added fauna were between 60 and 75 % and 65–100 % higher than in the control treatment respectively. The results of these three experiments suggest that the macrobenthic community may increase the benthic respiration by roughly a factor of two in these bottoms, where S. subtruncata is one of the dominant species. Both organic enrichment and macrobenthic community in general, and S. subtruncata in particular, did not seem to have a relevant role in P and Si cycles in these sediments.This research was supported by the Conselleria d'Educacio (Generalitat Valenciana). We are very grateful for the valuable comments of anonymous reviewers on previous version of the manuscript.Sospedra, J.; Falco, S.; Morata, T.; Rodilla, M. (2016). Influence of Organic Enrichment and Spisula subtruncata (da Costa, 1778) on Oxygen and Nutrient Fluxes in Fine Sand Sediments. Estuaries and Coasts. doi:10.1007/s12237-016-0174-1SAller, R.C., and J.Y. Aller. 1998. The effect of biogenic irrigation intensity and solute exchange on diagenetic reaction rates in marine sediments. Journal of Marine Research 56: 905–936.Aminot, A., and M. Chaussepied. 1983. Manuel des analyses chimiques en milieu marin. Brest: Centre National pour l’Exploitation des Oceans.Arnosti, C., and M. Holmer. 2003. Carbon cycling in a continental margin sediment: contrasts between organic matter characteristics and remineralization rates and pathways. Estuarine, Coastal and Shelf Science 58: 197–208.Baptist, M.J., and M.F. Leopold. 2009. The effects of shoreface nourishments on Spisula and scoters in The Netherlands. Marine Environmental Research 68: 1–11.Bartoli, M., D. Nizzoli, P. Viaroli, and E. Turolla. 2001. Impact of Tapes philippinarum farming on nutrient dynamics and benthic in the Sacca di Goro. Hydrobiologia 455: 203–212.Bellan-Santini, D., J.C. Lacaze, and C. Poizat. 1994. Les biocénoses marines et littorals de Méditerranées, synthèse, menaces et perspectives, Patrimoines naturels, 19. Paris: Secrétariat de la fauna et de la flore, MNHN.Beninger, P.G., and S.D. St-Jean. 1997. The role of mucus in particle processing by suspension-feeding marine bivalves: unifying principles. Marine Biology 129: 389–397.Biles, C.L., M. Solan, I. Isaksson, D.M. Paterson, C. Emes, and D.G. Raffaelli. 2003. Flow modifies the effect of biodiversity on ecosystem functioning: an in situ study of estuarine sediments. Journal of Experimental Marine Biology and Ecology 285-286: 165–177.Borja, A., J. Franco, and V. Pérez. 2000. A marine biotic index to establish the ecological quality of soft-bottom benthos within European estuarine and coastal environments. Marine Pollution Bulletin 40: 1100–1114.Boudreau, B.P., M. Huettel, S. Forster, R.A. Jahnke, A. McLachlan, J.J. Middelburg, P. Nielsen, F. Sansone, G. Taghon, W. Van Raaphorst, I. Webster, J.M. Weslawski, P. Wiberg, and B. Sundby. 2001. Permeable marine sediments: overturning an old paradigm. EOS. Transactions American Geophysical Union 82: 133–136.Braber, L., and S.J. De Groot. 1973. The food of five flatfish species (Pleuronectiformes) in the southern North Sea. Journal of Sea Research 6: 163–172.Canal-Verges, P., M. Vedel, T. Valdemarsen, E. Kristensen, and M.R. Flindt. 2010. Resuspension created by bedload transport of macroalgae: implications for ecosystem functioning. Hydrobiologia 649: 69–76.Canfield, D.E., B.B. Jorgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing, B. Thamdrup, J.W. Hansen, L.P. Nielsen, and P.O.J. Hall. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113: 27–40.Carlsson, M.S., R.N. Glud, and J.K. Petersen. 2010. Degradation of mussel (Mytilus edulis) fecal pellets released from hanging long-lines upon sinking and after settling at the sediment. Canadian Journal of Fisheries and Aquatic Sciences 67(9): 1376–1387.Castelli, A., C. Lardicci, and D. Tagliapietra. 2004. Soft-bottom macrobenthos. In Mediterranean Marine Benthos: A Manual of methods for its sampling and study Vol. 11 (Suppl. 1), ed. Maria Cristina Gambi, and Marco Dappiano, 99–131. Genova: Biologia Marina Mediterranea.Clark, R.B. 2002. Marine pollution, 5th edn. Oxford: Oxford University Press.Cloern, J.E. 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.Colijn, F., and V.N. de Jonge. 1984. Primary production of microphytobenthos in the Ems-Dollar Estuary. Marine Ecology Progress Series 14: 185–196.Cotano, U., and F. Villate. 2006. Anthropogenic influence on the organic fraction of sediments in two contrasting estuaries: a biochemical approach. Marine Pollution Bulletin 52: 404–414.Danovaro, R., and M. Fabiano. 1997. Seasonal changes in quality and quantity of food available for benthic suspension-feeders in the Golfo Marconi (North-western Mediterranean. Estuarine, Coastal and Shelf Science 44: 723–736.Danovaro, R., D. Marrale, N. Della Croce, P. Parodi, and M. Fabiano. 1999. Biochemical composition of sedimentary organic matter and bacterial distribution in the Aegean Sea: trophic state and pelagic-benthic coupling. Journal of Sea Research 42: 117–129.Dauer, D.M. 1993. Biological criteria, environmental health and estuarine macrobenthic community structure. Marine Pollution Bulletin 26(5): 249–257.Dauwe, B., P.M.J. Herman, and C.H.R. Heip. 1998. Community structure and bioturbation potential of macrofauna at four North Sea stations with contrasting food supply. Marine Ecology Progress Series 173: 67–83.De Vittor, C., F. Relitti, M. Kralj, S. Covelli, and A. Emili. 2015. Oxygen, carbon, and nutrient exchanges at the sediment-water interface in the Mar Piccolo of Taranto (Ionian Sea, southern Italy). Environmental Science and Pollution Research. doi: 10.1007/s11356-015-4999-0 .Degraer, S., P. Meire, and M. Vincx. 2007. Spatial distribution, population dynamics and productivity of Spisula subtruncata: implications for Spisula fisheries in seaduck wintering areas. Marine Biology 152(4): 863–875.Dell’Anno, A., M.L. Mei, A. Pusceddu, and R. Danovaro. 2002. Assessing the trophic state and eutrophication of coastal marine systems: a new approach base on the biochemical composition of sediment organic matter. Marine Pollution Bulletin 44: 611–622.Demestre, M., Guillén, J., Soriano, S., Palanques, A., Sánchez, P., Puig, P. and L. Recasens. 2007. Vertical distribution of benthic communities and bioturbation rates in the sediment of the inner shelf. Rapport Commission International pour l’exploration scientifique de la Mer Mediterraneé 38.Deval, C.M., and D. Göktürk. 2008. Population structure and dynamics of the cut through Shell Spisula subtruncata (da Costa) in the Sea of Marmara, Turkey. Fisheries Research 89: 241–247.Ehrenhauss, S., and M. Huettel. 2004. Advective transport and decomposition of chain-forming planktonic diatoms in permeable sediments. Journal of Sea Research 52: 179–197.Emmerson, M.C., M. Solan, C. Emes, D.M. Paterson, and D. Raffaelli. 2001. Consistent patterns and the idiosyncratic effects of biodiversity in marine ecosystems. Nature 411: 73–77.Fabiano, M., D. Marrale, and C. Misic. 2003. Bacteria and organic dynamics during a bioremediation treatment of organic-rich harbour sediments. Marine Pollution Bulletin 46: 1164–1173.Fichez, R. 1991. Composition and fate of organic matter in submarine cave sediments; implications for the biogeochemical cycle of organic carbon. Oceanologica Acta 14: 369–377.Fogarty, M.J., M.P. Sissenwine, and E.B. Cohen. 1991. Recruitment variability and the dynamics of exploited populations. Trends in Ecology & Evolution 6: 241–246.Fraschetti, S., A. Covazzi, M. Chiantore, and G. Albertelli. 1997. Life-history traits of the bivalve Spisula subtruncata (da Costa) in the Ligurian Sea (North-Western Mediterranean): the contribution of newly settled juveniles. Scientia Marina 61(2): 25–32.Fuentes, A., I. Fernández-Segovia, I. Escriche, and J.A. Serra. 2009. Comparison of physico-chemical parameters and composition of mussels (Mytilus galloprovincialis Lmk.) from different Spanish origins. Food Chemistry 112: 295–302.Gadea, I., M. Rodilla, J. Sospedra, S. Falco, and T. Morata. 2013. Seasonal dynamics of the phytoplankton community in the Gandia coastal area, Southern Gulf of Valencia. Thalassas 29(1): 37–60.Gerino, M. 1990. The effects of bioturbation on particle distribution in Mediterranean coastal sediment. Preliminary result. Hydrobiologia 207: 251–258.GIG. 2008. WFD Intercalibration technical report for coastal and transitional waters in the Mediterranean ecoregion. In: WFD Intercalibration Technical Report–Part 3: Coastal and Transitional Waters. Available from: http://publications.jrc.ec.europa.eu/repository/bitstream/111111111/10473/1/3010_08-volumecoast.pdf . Accessed 11 Nov 2015.Gilbert, F., P. Bonin, and G. Stora. 1995. Effect of bioturbation on denitrification in a marine sediment from the Western Mediterranean littoral. Hydrobiolgia 304: 49–58.Glud, R. 2005. Marine eutrophication and benthic metabolism. In Drainage basin nutrient inputs and eutrophication: an integrated approach, eds. Paul Wassmann and Kalle Olli, 147–154. Norway: University of Tromsø.Hargrave, B.T., M. Holmer, and C.P. Newcombe. 2008. Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Marine Pollution Bulletin 56(5): 810–824.Heilskov, A.C., and M. Holmer. 2001. Effects of benthic fauna on organic matter mineralization in fish-farm sediments: importance of size and abundance. Journal of Marine Science 58: 427–434.Heilskov, A.C., M. Alperin, and M. Holmer. 2006. Benthic fauna bio-irrigation effects on nutrient regeneration in fish farm sediments. Journal of Experimental Marine Biology and Ecology 339: 204–225.Holmer, M., and E. Kristensen. 1994. Anaerobic mineralization of fish farmwaste products in organic-rich sediments. In Changes in Fluxes in Estuaries, ed. Keith R. Dyer, and Robert Joseph Orth, 283–289. Denmark: Olsen and Olsen.Holmer, M., C.M. Duarte, and N. Marbá. 2003. Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry 66: 223–239.Hooper, D.U., F.S. Chapin III, J.J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J.H. Lawton, D.M. Lodge, M. Loreau, S. Naeem, B. Schmid, H. Setälä, A.J. Symstad, J. Vandermeer, and D.A. Wardle. 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75(1): 3–35.Huettel, M., P. Berg, and J.E. Kostka. 2014. Benthic exchange and biogeochemical cycling in permeable sediments. Annual Review of Marine Science 6: 23–51.Jørgensen, B.B., and M.P. Revsbech. 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography 30(1): 111–122.Karlson, K., S. Hulth, K. Ringdahl, and R. Rosenberg. 2005. Experimental recolonization of Baltic Sea reduced sediments: survival of benthic macrofauna and effects on nutrient cycling. Marine Ecology Progress Series 294: 35–49.Kristensen, E., G. Penha-Lopes, M. Delefosse, T. Valdemarsen, C.O. Quintana, and G.T. Banta. 2012. What is bioturbation? The need for a precise definition for fauna in aquatic sciences. Marine Ecology Progress Series 446: 285–302.Laverock, B., J.A. Gilbert, K. Tait, A.M. Osborn, and S. Widdicombe. 2011. Bioturbation: impact on the marine nitrogen cycle. Biochemical Society Transactions 39(1): 315–320.Lewis, C.V.W., J.R. Weinberg, and C.S. Davis. 2001. Population structure and recruitment of the bivalve Arctica islandica (Linnaeus, 1767) on Georges Bank from 1980-1999. Journal of Shellfish Research 20: 1135–1144.Lohrer, A.M., S.F. Thrush, and M.M. Gibbs. 2004. Bioturbators enhance ecosystem function through complex biogeochemical interactions. Nature 431: 1092–1095.López, N.I., C.M. Duarte, F. Vallespinós, J. Romero, and T. Alcoverro. 1998. The effect of nutrient additions on bacterial activity in seagrass (Posidonia oceanica) sediments. Journal of Experimental Marine Biology and Ecology 224: 155–165.Lundkvist, M., M. Grue, P.L. Friend, and M.R. Flindt. 2007. The relative contributions of physical and microbiological factors to cohesive sediment stability. Continental Shelf Research 27(8): 1143–1152.Mantoura, R.F.C., J.-M. Martin, and R. Wollast. 1991. Ocean margin process in global change. Chichester: Wiley & Sons.Martinez-Garcia, E., M.S. Carlsson, P. Sanchez-Jerez, J.L. Sánchez-Lizaso, C. Sanz-Lazaro, and M. Holmer. 2015. Effect of sediment grain size and bioturbation on decomposition of organic matter from aquaculture. Biogeochemistry 125: 133–148.Mayer, P., V.D. Estruch, and M. Jover. 2012. A two-stage growth model for gilthead sea bream (Sparus aurata) based on the thermal growth coefficient. Aquaculture 358-359: 6–13.McKindsey, C.W., P. Archambault, M.D. Callier, and F. Olivier. 2011. Influence of suspended and off-bottom mussel culture on the sea bottom and benthic habitats: a review. Canadian Journal of Zoology 89(7): 622–646.Mermillod-Blondin, F., and R. Rosenberg. 2006. Ecosystem engineering: the impact of bioturbation on biogeochemical processes in marine and freshwater benthic habitats. Aquatic Sciences 68: 434–442.Mermillod-Blondin, F., F. François-Carcaillet, and R. Rosenberg. 2005. Biodiversity of benthic invertebrates and organic matter processing in shallow marine sediments: an experimental study. Journal of Experimental Marine Biology and Ecology 315: 187–209.Michaud, E., G. Desrosiers, F. Mermillod-Blondin, B. Sundby, and G. Stora. 2005. The functional group approach to bioturbation: the effects of biodiffusers and gallery-diffusers of the Macoma balthica community on sediment oxygen uptake. Journal of Experimental Marine Biology and Ecology 326: 77–88.Moodley, L., M. Steyaert, E. Epping, J.J. Middelburg, M. Vincx, P. van Avesaath, T. Moens, and K. Soetaert. 2008. Biomass-specific respiration rates of benthic meiofauna: demonstrating a novel oxygen micro-respiration system. Journal of Experimental Marine Biology and Ecology 357: 41–47.Morata, T., J. Sospedra, S. Falco, and M. Rodilla. 2012. Exchange of nutrients and oxygen across the sediment-water interface below a Sparus aurata marine fish farm in the north-western Mediterranean Sea. Journal of Soils and Sediments 12(10): 1623–1632.Morata, T., S. Falco, J. Sospedra, I. Gadea, and M. Rodilla. 2014. Benthic recovery after the cessation of a gilt-head seabream, Sparus aurata, farm in the Mediterranean Sea. Journal of the World Aquaculture Society. 45(4): 380–391.Mortimer, R.J.G., J.T. Davey, M.D. Krom, P.G. Watson, P.E. Frickers, and R.J. Clifton. 1999. The effect of macrofauna on porewater profiles and nutrient fluxes in the intertidal zone of the Humber Estuary. Estuarine, Coastal and Shelf Science 48: 683–699.Newell, R. 1979. Biology of intertidal animals, 3ª edn. Faversham: Marine Ecological Surveys.Pastor, L., B. Deflandre, E. Viollier, C. Cathalot, E. Metzger, C. Rabouille, K. Escoubeyrou, E. Lloret, A.M. Pruski, G. Vétion, M. Desmalades, R. Buscail, and A. Grémare. 2011. Influence of the organic matter composition on benthic oxygen demand in the Rhône River prodelta (NW Mediterranean Sea. Continental Shelf Research 31: 1008–1019.Pearson, T., and R. Rosenberg. 1978. Macrobenthic succession in relation to organic enrichment and pollution of the marine environment. Oceanography and Marine Biology 16: 229–311.Pernetta, J.C., and J.D. Milliman. 1995. Land-ocean interactions in the coastal zone. Implementation plan. Stockholm: IGBP.Piedecausa, M.A., F. Aguado-Giménez, J. Cerezo, M.D. Hernández, and B. García-García. 2012. Influence of fish food and faecal pellets on short-term oxygen uptake, ammonium flux and acid volatile sulphide accumulation in sediments impacted by fish farming and non-impacted sediments. Aquaculture Research 43: 66–74.Pihl, L., and R. Rosenberg. 1984. Food selection and consumption of the shrimp Crangon crangon in some shallow marine areas in western Sweden. Marine Ecology Progress Series 15: 159–168.Pratihary, A.K., S.W.A. Naqvi, H. Naik, B.R. Thorat, G. Narvenkar, B.R. Manjunatha, and V.P. Rao. 2009. Benthic fluxes in a tropical Estuary and their role in the ecosystem. Estuarine, Coastal and Shelf Science 85: 387–398.Pusceddu, A., A. Dell’Anno, M. Fabiano, and R. Danovaro. 2004. Quantity and biochemical composition of organic matter in marine sediments. In Mediterranean Marine Benthos: A Manual of methods for its sampling and study Vol. 11 (Suppl. 1), ed. Maria Cristina Gambi, and Marco Dappiano, 39–53. Genova: Biologia Marina Mediterranea.Pusceddu, A., A. Dell’Anno, M. Fabiano, and R. Danovaro. 2009. Quantity and bioavailability of sediment organic matter as signature of benthic trophic status. Marine Ecology Progress Series 375: 41–52.Pusceddu, A., S. Bianchelli, C. Gambi, and R. Danovaro. 2011. Assessment of benthic trophic status of marine coastal ecosystems: significance of meiofaunal rare taxa. Estuarine, Coastal and Shelf Science 93: 420–430.Queirós, A.M., S.N.R. Birchenough, J. Bremner, J.A. Godbold, R.E. Parker, A. Romero-Ramirez, H. Reiss, M. Solan, P.J. Somerfield, C. Van Colen, G. Van Hoey, and S. Widdicombe. 2013. A bioturbation classification of European marine infaunal invertebrates. Ecology and Evolution 3(11): 3958–3985.Raffaelli, D.G., J.A. Raven, and L.J. Poole. 1998. Ecological impact of green macroalgal blooms. Oceanography and Marine Biology, An Annual Review 36: 97–126.Røy, H., M. Hüttel, and B.B. Jørgensen. 2002. The role of small-scale sediment topography for oxygen flux across the diffusive boundary layer. Limnology and Oceanography 47(3): 837–847.Rueda, J.L., and A.C. Smaal. 2004. Variation of the physiological energetics of the bivalve Spisula subtruncata (da Costa, 1778) within an annual cycle. Journal of Experimental Marine Biology and Ecology 301: 141–157.Rullkötter, J. 2006. Organic matter: the driving force for early diagenesis. In Marine geochemistry, eds. Horst D. Schulz and Matthias Zabel, 125–168. Berlin: Springer-Verlag.Sardá, R., S. Pinedo, A. Gremare, and S. Taboada. 2000. Changes in the dynamics of shallow-bottom assemblages due to sand extraction in the Catalan Western Mediterranean Sea. ICES Journal of Marine Science 57: 1446–1453.Sebastiá, M.-T., and M. Rodilla. 2013. Nutrient and phytoplankton analysis of a Mediterranean coastal area. Environmental Management 51: 225–240.Sebastiá, M.-T., M. Rodilla, S. Falco, and J.-A. Sanchis. 2013. Analysis of the effects of wet and dry seasons on a Mediterranean river basin: consequences for coastal waters and its quality management. Ocean & Coastal Management 78: 45–55.Smith, V.H. 2002. Eutrophication of freshwater and coastal marine ecosystems. A global problem. Environmental Science and Pollution Research 10(2): 126–139.Solan, M., P. Batty, M.T. Bulling, and J.A. Godbold. 2008. How biodiversity affects ecosystem processes: implications for ecological revolutions and benthic ecosystem function. Aquatic Biology 2: 289–301.Sospedra, J., S. Falco, T. Morata, I. Gadea, and M. Rodilla. 2015. Benthic fluxes of oxygen and nutrients in sublittoral fine sands in a north-western Mediterranean coastal area. Continental Shelf Research 97: 32–42.Thamdrup, B., J.W. Hansen, and B.B. Jørgensen. 1998. Temperature dependence of aerobic respiration in a coastal sediment. FEMS Microbiology Ecology 25: 189–200.Venturini, N., A.L. Pita, E. Brugnoli, F. García-Rodríguez, L. Burone, N. Kandratavicius, M. Hutton, and P. Muniz. 2012. Benthic trophic status of sediments in a metropolitan area (Rio de la Plata estuary): Linkages with natural and human pressures. Estuarine, Coastal and Shelf Science 112: 139–152.Viaroli, P., M. Bartoli, C. Bondavalli, R.R. Christian, G. Giordani, and M. Naldi. 1996. Macrophyte communities and their impact on benthic fluxes of oxygen, sulphide and nutrients in shallow eutrophic environments. Hydrobiologia 329: 105–119

    The Collapse of a Wedge Clam Fishery in the Spanish Mediterranean Coast and Recovery Problems

    Full text link
    [EN] In the sandy shores of the Spanish Mediterranean, Donax trunculus (Linnaeus, 1758) has a high commercial interest. In the Gulf of Valencia, poor management of fishing activity led to its closure in June 2015. The objective of this study was to analyze the evolution of the catches of D. trunculus before the closure of the fishery as well as the biomass and density of the population in the months following the closure, plus 2 y later. The area of study was located in the main fishing area of the Gulf of Valencia, which belongs to the fleet of the Gandia Fishermen's Guild. The fishing beds for this clam are found on sandy sediments in shallow waters (between 0 and 2 m). During the 10 y previous to the fishery closure, the annual catch per unit effort of D. trunculus suffered a sharp decrease, falling from values between 37 and 42 (kg small vessel(-1) d(-1)) during the period 2004-2008 to 5.5 in 2014. After the closure, the biomass and density of the wedge clam showed a seasonal pattern, with maximum values in summer, as well as notable differences in densities along the shore in each sampled month. Furthermore, a different size-frequency distribution across depth, with smaller individuals in the shallower areas, was observed. Nevertheless, a general and considerable decline for biomass and density from 2015 (monthly mean of commercial biomass ranged from 24 to 48 kg ha(-1)) to 2017 (from 4 to 13 kg ha-1) was noted. This indicates that the closure did not improve the state of the population. There are several hypotheses that could explain this decline such as overfishing, changes in environmental conditions, higher predation (in benthic and planktonic phases), and the reduction of food availability. Therefore, there would be a need to study them in greater depth, as well as to increase the understanding of the spatial dynamics and connectivity of the Donax beds.Escriva, J.; Rodilla, M.; Llario, F.; Falco, S. (2021). The Collapse of a Wedge Clam Fishery in the Spanish Mediterranean Coast and Recovery Problems. Journal of Shellfish Research. 40(1):37-47. https://doi.org/10.2983/035.040.0105S374740
    • …
    corecore